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Prediction of the plastic zone in front of the crack tip has been done using a modified Dugdale's model 
for strain hardening low density polyethylene. By knowing the strain hardening index n, yield stress crv, 
crack length a, and average stress acting far away from the crack a~, the size of the plastic zone, rp, can 
be calculated. Simulation seems to be promising for the ratio of rp to the ligament length, b, falling in the 
range of 6-24%. If ra/b is <6%, restriction from the elastic domain seems to affect the expansion of the 
plastic zone. For rp/b > 24%, the plastic zone becomes so large that the HRR stress singularity together 
with the boundary condition used in this simulation may lose its significance and the resultant stress 
distribution deviates from the real situation. A detailed evaluation of the stress function inside the plastic 
zone is needed before further comment can be made. 
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I N T R O D U C T I O N  

One of the main subjects in fracture mechanics has 
involved characterizing the domain of the plastic zone in 
front of the crack tip. According to the work of Broberg 1 
and Andersson 2, the plastic zone plays an important role 
in stable crack growth. Combination of the von Mises' 
criterion of yielding and the stress function derived from 
linear elastic fracture mechanics (LEFM)  is valid only 
for materials showing linear mechanical behaviour and 
undergoing very small scale yielding. While most 
materials possess, to some extent, non-linear mechanical 
behaviour, the plastic zone calculated from LEFM is too 
small and not realistic. This is especially true for 
polymeric materials. For  polymers it is common for yield 
stress to be much lower than the maximum stress (stress 
at break). It is reasonable to say that, inside the plastic 
zone, material does not fracture immediately after 
yielding. That  is to say, at the crack tip there exists a 
yielded domain which is not necessarily small compared 
with other dimensions. Small scale yielding at the crack 
tip is no longer convincing. 

Effort has been focused on modelling the crack tip 
stress field assuming either perfectly elastic or perfectly 
plastic mechanical behaviour. Irwin 3 suggested that the 
stress distribution in front of the crack tip can be 
expressed by assuming that the crack length is longer 
than that in the real situation. With his method, the 
plastic zone calculated was found to be twice that 
calculated from LEFM under plane stress conditions. 
Dugdale 4 proposed his well known model by assuming 
that the crack tip front can be treated as two isolated 
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singular domains acted on by a remote stress and by a 
compressive yield stress, respectively. Dugdale 's  model 
has been proved to be quite successful for materials with 
perfectly plastic behaviour after yielding. Both methods 
faced a common difficulty in that the stress singularity 
in the plastic zone is not yet specifically derived. As 
perfectly plastic behaviour after yielding is not a 
common phenomenon in engineering plastics, Dugdale's 
model has to be modified. While Irwin's method took 
care of the stress distribution in the crack tip front, this 
distribution is based on the assumption of linear 
mechanical behaviour as used in LEFM so that material 
undergoing non-linear mechanical behaviour fails using 
this method. 

For  materials with elastic-plastic behaviour, the 
stress, or strain, singularity around the crack tip has been 
extensively studied. Unfortunately, evaluation of the 
stress distribution is not clear except for anti-plane 
shearing 5. Direct application of either von Mises' or 
Tresca's criterion of yielding is impossible without 
knowing the stress components. We have studied this 
problem and proposed a modified model for materials 
showing strain hardening behaviour after yielding. The 
main point is that strain hardening has been taken into 
account so that the stress inside the plastic zone is no 
longer constant as in perfectly plastic materials. This 
method has been applied to low density polyethylene 
(LDPE)  and the result is encouraging. 

THEORY 

Hutchinson 6'7 and Rice and Rosengren 8 suggested that 
for power-law hardening material, the singular behaviour 
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Figure 1 Stress distribution of the Dugdale model (upper) and of the 
modified model (lower) 

at the crack tip could be expressed by the following 
equation" 

(Tij kijtTij( O , ii )r ( -  1/,+ z) ( 1 ) 

where r is the distance from the crack tip and n is the 
strain hardening index. The term ku, which is the stress 
intensity function and is a scalar in LEFM, is now a 
tensor. Hence au(O,  n )  is a function of 0, the angle from 
the crack plane, and n. This is known as the HRR stress 
singularity. While equation ( 1 ) involves many variables, 
it has to be simplified for further application. First, we 
focus on the restriction that 0 0. That is to say, we will 
only deal with this problem in the crack plane with its 
normal parallel to the stretch direction. Let us define the 
stretch direction as the y-axis. Second, as the boundary 
condition used by Irwin, we assume that Cryy, which is  
the stress component in the stretch direction, equals the 
yield stress O-y at the boundary between the plastic zone 
and the remaining elastic field. If this boundary is at the 
position re, that is, the size of the plastic zone at the 
crack tip front equals rp, equation ( 1 ) can be rewritten as 

cry krvary(0 , n )r(p i/,,,+ i) (1 ' )  

so that 

kyyOyy(0, r/) o 'yr  (l/n+ 1) (2 )  

By combining equations (1') and (2), we obtain 

ayv avr~ l / "+ l)r ( -1 /"+1)  (3) 

for 0 = 0 .  
In equation (3), it appears that the stress distribution 

is autonomous inside the plastic zone. In fact, as will be 
shown later, r v in equation (3) is determined by the crack 
length a and the remote stress as .  This, in turn, affects 
the stress distribution inside the plastic zone. 

As shown in Figure  1, Dudgale's model is modified 
by replacing the constant yield stress by a stress field 
distributing according to the singularity given in equation 
(3). The stress intensity factor at the crack tip due to the 
compressive stress can be derived using Irwin's stress 
function. For a centre cracked specimen with indefinite 
width as shown in Figure  2, Irwin's stress function 9 Z] 
can be expressed as: 

stress function is: 

(dK~) a x / ~  lim [(x/z  a)dZ~] 
z~a 

~ l i m  ~ f ( ~ ) ~  p (+ )d~  ] 
=+o(. L n ( z -  ¢)J 

- P(+) (~/"J + +'~d+ (4) 

Therefore, the stress intensity factor at the crack tip due 
to the distributing stress in the positive domain is: 

.<,),,+ + q , : ,+  

and that due to the distributing stress in the negative 
domain can be derived by the same procedure and can 
be expressed as: 

f - b  P(+) (w/a  + +'~d~ (kl)a---"~ J - a  ~ a k ~ /  (6)  

Then the total intensity factor at the crack tip in the 
positive domain is: 

(KI). (K , )a+  + (KI)a- 

f° (Jo + q j , ,  d+ 

+ / - b  p(+) ( ~ / a +  ~-'~d+ (7) 
- a  

On the other hand, the stress intensity factor due to the 
remote stress can be expressed as: 

(Kl)oo o'ooN//~a (8)  

When Dugdale's model is applied, the crack length a in 
equations (7) and (8) should be changed to a + r v where 
r v is the size of the plastic zone. As the stress at the 
pseudo-crack tip (a + rp) is constant (av), the summation 
of the stress factors from troo and from distributing stress 
at the tip should be zero. This leads to the following 
equation : 

( K , ) ~  o ( K , ) .  ( K , ) . +  + ( K , )  a_ (9) 

P((l 

)-X 

dZi n ( z  ¢ ) \ ~ ]  

The stress intensity factor at the crack tip due to this Figure 2 Distributed stress around the crack tips 
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By replacing p(()  in equation (9) with ayy in equation 
(3), the plastic zone (rp) can be derived from equation 
(9) by simple numerical analysis. As can be seen, if p(~) 
is replaced by the constant distributing stress av, equation 
(9) can be reduced to the normal Dugdale model. 

In the case of single edge-cracked tension (SECT), the 
above model can be modified by assuming that the crack 
length is very large so that the effect from the negative 
domain can be neglected. Because the plastic zone is 
small compared with the crack length, the value of (¢/a) 
should be close to unity. Then equation (4) becomes 

( d K , ) . -  P(~) ( ` / a - -+- -~d(  

P(¢) F 1 +¢/a 2]d¢ 
L,,/1 (U-a) 

, /ha , / 1 -  2 

In the case of a SECT specimen with definite dimensions, 
equation (10) can be modified further by multiplying the 
right-hand terms with a factor f(~/a), which varies 9 from 
1.3 to 1 depending on the position 4. If the plastic zone 
is not large compared with the crack length, this factor 
is in the range of 1.1-1. Therefore the stress intensity 
factor at the crack tip of a SECT specimen can be 
expressed as : 

]de (,,) 
.]b L , / r l aJL , /1 -  ~la) 2 

while the stress intensity factor due to aoo is still that 
shown in equation (8). By applying Dugdale's model, 
from equations (3), (8) and ( 11 ), we obtain : 

5 

4 

b 

Figure 4 
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{ 2({-a)'-*i"+l' 
- l - 7 ~ ( a ~ r . ) ] 2 j f ( ~ / a + r e ) d ~ = O  (12) 

Again, rp in equation (12) can be derived by a numerical 
method. 

EXPERIMENTAL 

The LDPE used in this work was supplied by the 
Mitsubishi Petro. Chem. Co. (trade no. PK-30). As 
shown in Figure 3 this material shows strain hardening 
after yielding and no necking behaviour is observed. 
Figure 4 is plotted by normalizing the stress and strain 
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Figure 3 
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Load-displacement curve of LDPE 
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to non-dimensional terms by the yield stress and the 
strain at the yield point. The yield stress is found to be 
5.68 MPa. The strain hardening index n from the 
normalized curve is found to be 1.54 with a deviation 
of 0.25 due to the following stress strain relation: 

(13) 
O'yy 

SECT samples were prepared according to the dimensions 
shown in Figure 5. According to our previous work ~°, 
the length of the sample has to be three times the value 
of the width in order to prevent boundary effects from 
the grips. The crack length varies from 9 to 21 mm so 
that the ratio of the initial crack length a to the width 
w is in the range of 0.3-0.7. The test was performed at 
a tensile speed of 0.4 mm min-1 at room temperature. 

Photographs were taken every millimetre of stretching 
by using a polarizer and an analyser so that the 
isochromatic fringe loops of the samples which implied 
the iso-stress path could be characterized. The iso-stress 
path of plane stress is circular while that of plane strain 
is shaped like two leaves. This can be easily proved by 
replacing the yield stress in van Mises' yielding criterion 
with any particular stress. In Figure 6a the isochromatic 
fringe loops close to the crack tip are circular while the 
remote ones are of the plane strain type. It is found that 
the thickness in the plane stress area decreased a lot 
which was not recoverable even after unloading. In this 
work, the intersect between the plane stress fringes and 
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Figure 6 Schematic representation of the plastic zone with initial crack length of 12 mm: (a) 
during loading; (b) after unloading; (c) simulation from FEM calculated at a stress level similar 
to that of (a) and (b) 

the plane strain fringes is defined as the boundary of the 
plastic zone. This has been confirmed by unloading the 
samples to zero load and the plastic zone showing the 
plane stress isochromatic loop was found to be 
unrecoverable (Figure 6b). The shape of the plastic zone 
is similar to that calculated using the Finite Element 
Method (FEM) by Andersson 2 on poly(vinyl chloride) 
under plane stress conditions. Our FEM result is shown 
in Figure 6c for comparison. As the crack propagated 
with the displacement control deformation, it was found 
that the plastic zone also expanded. Evaluation of the 
plastic zone is not limited to stationary cracks but also 
extends to growing cracks. 

RESULTS AND DISCUSSION 

As shown in equation (3), if n 1, all the discussion 
converges to the perfectly elastic type. On the other hand, 
ifn o% then we are dealing with materials with perfectly 
plastic behaviour after yielding. The former condition 
can be dealt with by LEFM under plane stress conditions 
while the latter corresponds to Dugdale's model. 
Obviously, materials showing strain hardening should 
fall in between. Figure 7 shows how the non-dimensional 
ratio of the plastic zone to the crack length, rp/a, changes 
with the non-dimensional ratio of the remote stress to 
the yield stress, O'oo/O'y, in the elastic and plastic cases. 
The solid lines are calculated from the modified model 
according to equation (13). It is found that for 
troo/a v < 0.3, the curve with n 1 fits very well to values 
calculated by LEFM under plane stress conditions 
according to the following equation: 

rP -1 (a°°~ 2 (14)  

a 2 k, av}  

The perfectly plastic case (n 106) reveals that the 
relationship between rp/a and a ~ / a v  is similar to 
Dugdale's model according to the following equation: 

rp 1-]2 ( 6 ~  2 
(15) 

a 8 \ f l y /  

The experimental results are shown in Figure 8 with 
non-dimensional coordinates aoo/av and rv/a. Three 
curves calculated with n I, 1.54 and 106 are presented. 
As seen from Figure 8, the experimental results are in 
agreement with the calculated curve with n 1.54. The 
prediction based on perfectly plastic behaviour (n 106 ) 
shows quite a large deviation from the real situation. As 

n=lO 6 n=l 
0.3 

0-2 

/ 
0.1 

o j , , 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

o - ® / o - y  

Figure 7 Comparison of rpla calculated from LEFM ( - - - - ) ,  the 
Dugdale model ( - - - )  and from the modified model ( - - )  

. =  io 6 
n= 1.54 o, //// ./7' 

o, // 

(/ '  o.1 /// 

0 O, I 0-2 0-3 0,4 05 0.6 0.7 

~ / ~  
Figure 8 Comparison of experimental results with those calculated 
for the modified model 
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LDPE shows strain hardening after yielding, the stress 
inside the plastic zone should be much higher than the 
yield stress. The maximum stress of LDPE is 19.5 MPa 
which is close to four-fold try- This fact reveals that after 
the stress of any point of the sample reaches try, it will 
continue to increase instead of remaining constant. As a 
consequence, for the whole system, more energy is 
consumed for the deformation inside the plastic zone so 
that the plastic zone expands slower than prediction by 
assuming perfectly plastic behaviour. The triangular 
symbols are results from FEM calculation for a crack 
length of 12 mm. It can be seen that the numerical 
calculation fits quite well with the modified model. 

As shown in Figure 8, some of the points fall on the 
curve by assuming perfectly elastic behaviour. The most 
interesting thing is that these points are from samples 
with a / w  < 0.4. These samples possess a larger ligament 
length b compared with other samples. We find that if 
rp/b is < 6 % ,  the experimental results are close to the 
curve with n 1. This can be explained by considering 
that the elastic field surrounding the plastic zone will 
restrict the development of the plastic zone if the rp/b 
ratio is quite small. The stress outside the plastic zone 
is less than the yield stress try. In order to increase the 
stress level of the elastic part, the stress in the plastic 
zone must reach a higher level first. According to LEFM,  
for the same try, samples with smaller crack lengths result 
in smaller stress intensity functions and the stress 
distribution in front of the crack tip should be lower. 
Since a / w  is <0.4, the crack length is small so that the 
stress intensity at the crack tip is also small. As a 
consequence, the yielded domain at the crack tip is small. 
This is especially true when the ligament is much larger 
than the yielded domain. In this case, restriction from 
the elastic field surrounding the plastic zone is strong. 
As rp/b becomes > ~ 6 % ,  the experimental data 
correspond to the curve with n 1.54. This implies that 
the restriction from the elastic part is smaller and the 
size of the plastic zone becomes predictable. 

The calculation is based on the assumption that the 
stress inside the plastic zone is dominated by the HRR 
stress singularity. As the plastic zone becomes very large, 
this assumption seems to be no longer valid. Indeed, this 
has been confirmed by carefully tracing the growth of 
the plastic zone. We find that if rp/b becomes > ~2 4 %,  
some of the experimental results deviate from the 
predicted curve. This happens before the increase of the 
load becomes slow in the load-displacement curve and 
the propagation of the crack is no longer small. We 
suggest that this is due to the fact that the stress in the 
elastic domain reaches a certain high level and the plastic 
zone is no longer small compared with the elastic part. 
Even the increment in tr~ becomes slower, and the 
increasing crack length which, in turn, results in larger 
stress intensity function becomes another potential factor 
in increasing the stress level. For  the material out of the 

plastic zone, the transition from the elastic into the plastic 
state becomes faster. Also the stress distribution inside 
the plastic zone is no longer controlled by the HRR 
singularity 6-8. Another important effect that has to be 
taken into account is the existence of a large plastic zone 
that is not a ' thin layer'  as Dugdale 's  crack. Then the 
stress intensity function (KI)~ should be different from 
that in equation (8). Because the exact stress distribution 
in the plastic zone is not available, we are unable to 
further predict the growth of the plastic zone. Detailed 
evaluations of the stress singularity of both the large 
plastic zone and the elastic field surrounding it have to 
be studied before further comment can be made. It is 
well known that at the crack tip a fracture processing 
zone exists and stress relaxation occurs. This 'end-zone'  1 
is very small compared with the other dimensions. It is 
found that if 5 % of rp is taken as the fracture processing 
zone and the stress is kept constant inside it, the 
calculation does not change significantly. 

CONCLUSIONS 

Prediction of the plastic zone at the crack tip that is not 
limited to small scale yielding has been performed on 
strain hardening LDPE. Our calculation is based on the 
Dugdale model with HRR stress singularity. Four  
variables (tr®, try, n and a) are needed for the calculation 
while results can be represented by two non-dimensional 
terms (ra/a and troo/trv). Simulation is found to be good 
not only for stationary cracks but also for propagating 
cracks. For  shallow cracks with rp/b < 6%, experimental 
results are close to calculated values by assuming 
perfectly elastic behaviour. This is interpreted by 
considering the restriction from the elastic part surround- 
ing the plastic zone. In this case, 'small scale yielding' 
seems to be the dominate mechanism. While for ra/b 
> 24%, the observed plastic zone exceeds the calculated 
one. In this case, the stress distribution inside the plastic 
zone may not be as for HRR singularity. Also, as the 
plastic zone is not small compared with the ligament 
length, the plastic zone may affect the stress intensity 
function calculated by the pseudo-crack length (a + rp). 
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